Analysis of blood vessel topology by cubical homology

نویسندگان

  • Konstantin Mischaikow
  • Pawel Pilarczyk
  • William D. Kalies
  • Marc Niethammer
  • Andrew Stein
  • Allen Tannenbaum
چکیده

In this note, we segment and topologically classify brain vessel data obtained from magnetic resonance angiography (MRA). The segmentation is done adaptively and the classification by means of cubical homology, i.e. the computation of homology groups. In this way the number of connected components (measured by H0), the tunnels (given by H1) and the voids (given by H2) are determined, resulting in a topological characterization of the blood vessels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directed Combinatorial Homology and Noncommutative Tori ( * ) (the Breaking of Symmetries in Algebraic Topology)

This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topological ...

متن کامل

Ideas from Zariski topology in the study of cubical sets, cubical maps, and their homology

Cubical sets and their homology have been used in dynamical systems as well as in digital imaging. We take a refreshing view on this topic, following Zariski ideas from algebraic geometry. The cubical topology is defined to be a topology in R in which a set is closed if and only if it is cubical. This concept is a convenient frame for describing a variety of important features of cubical sets. ...

متن کامل

Directed combinatorial homology and noncommutative geometry

We will present a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topo...

متن کامل

NORMED COMBINATORIAL HOMOLOGY AND NONCOMMUTATIVE TORI Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

Cubical sets have a directed homology, studied in a previous paper and consisting of preordered abelian groups, with a positive cone generated by the structural cubes. By this additional information, cubical sets can provide a sort of ‘noncommutative topology’, agreeing with some results of noncommutative geometry but lacking the metric aspects of C∗-algebras. Here, we make such similarity stri...

متن کامل

Normed combinatorial homology and noncommutative tori (*)

Cubical sets have a directed homology, studied in a previous paper and consisting of preordered abelian groups, with a positive cone generated by the structural cubes. By this additional information, cubical sets can provide a sort of 'noncommutative topology', agreeing with some results of noncommutative geometry but lacking the metric aspects of C*-algebras. Here, we make such similarity stri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002